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M-ary POISSON DETECTION AND OPTICAL COMMUNICATIONS

By Sherman Karp
Electronics Research Center

and

Robert M. Gagliardi
University of Southern California

SUMMARY

This report presents an investigation of the problem of maximum likeli-
hood detection of one of M Poisson processes in a background of additive
Poisson noise. When the observables correspond to counts of emitted photo-
electrons, the problem models a discrete version of a coherent M-ary optical
communication system using photon counters in the presence of background
radiation. Consideration is given to an average distance and a detection
probability criterion. The advantages of an M-ary-pulsed intensity set
(Poisson intensities wholly concentrated in a single counting interval) are
demonstrated. The performance of such intensity sets is exhibited in terms
of error probabilities, pulse widths, signal-to-noise ratio, and channel
capacity. Behavior as a function of number of intensities M is also dis-
cussed. By appropriate conversion these latter results may be used for de-
termining power requirements in an optical pulse position modulation system.

I. INTRODUCTION

The application of detection theory to the field of optical communications
has been a subject of increasing interest. Since the output of a photodetect-
ing surface is often modeled as sequences of electron ''counts', and since
optical photoelectrons have been readily accepted as obeying Poisson statis-
tics, the analysis problem is basically one of signal detection involving
Poisson processes. The problem was first formulated in this context by
Reiffen and Sherman [ref. 1] , and further contributions were made by
Abends [ref. 2], Kailath [ref. 3] , and Helstrom [ref. 4] . In this report
the general problem of M-ary detection based upon observations of events
described by a time-discrete Poisson process is investigated.

Though the formulation of the problem is of a general nature, the
principal application is to optical communications, and the practical limits
of such a system will govern the mathematical assumptions imposed.
Consideration is given to the divergence criterion for detection and to a
criterion of maximization of probability of detection, both readily accepted
as suitable design objectives. The intensity set yielding optimal perform-
ance based on special cases of these criteria is shown to be a special type
of orthogonal intensity set, composed of M disjoint intensities wholly con-
centrated in a counting interval. Previously, the superiority of this type of
signal set in binary detection had been shown by Abends [ref. 2], based on
a signal-to-noise ratio criterion, and by Kailath [ref. 3], based on distance
criteria. This report represents an extension of these results to M-ary
Poisson detection.



The formulation of the problem follows that of Reiffen and Sherman
{ref. 11 . The occurrence of events over an observed interval A T is said to

obey a Poisson process if the probability of exactly k (an integer) occurring
is given by

k
P(k) = (nﬁT) e -DAT . (1)

The parameter n is the average rate of occurrence and is called the intensity
of the process, The average number of events occurring is then nA T and is
often called the level of the process, If the events occur over a sequence of
AT intervals in which the intensity may vary from one interval to the next,
but is constant over each interval, we have a discrete time-varying Poisson
process. In photodetection each event corresponds to the emission of an
electron, which occurs upon arrival of a photon, each photon having a fixed
energy. The level is therefore proportional to the average energy received
per interval, while the intensity n is proportional to the average power (see
section V). Thus, constraints upon level and intensity in Poisson processes
are equivalent to energy and power constraints on the incident radiation.

In optical PCM communications, information is transmitted, as shown
in Figure l1-a, by sending an optical signal intensity modulated with one of a
set of possible intensities. The modulated signal is corrupted by fixed inten-
sity background radiation during reception, resulting in a process, the inten-
sity of which is the sum of each intensity. The output of the photodetecting
surface at the receiver is then a time-varying Poisson process of electron
counts having the received intensity, In an M-ary system the transmitter
selects one of a set of M intensities for the optical process, The receiver,
after photodetection, counts the number of electrons in each of M intervals
A T seconds long and attempts to maximum likelihood detect which of M
intensities is controlling the observed process. It is assumed that AT is
suitably shorter than the inverse bandwidth of the intensities so that the inten-
sity remains approximately constant over AT. In addition we assume the
counting interval is exactly known at the receiver by a perfect synchronization
link, Thus, the above system can be modeled by the block diagram in Fig-
ure 1-b, The input signal corresponds to a discrete Poisson process, while
the interference appears as additive Poisson noise. (Recall that the sum of
independent Poisson processes is itself a Poisson process having an intensity
equal to the sum of the intensities.) The assumption of additive Poisson noise implies
that the optical bandwidth is in general wider than the receiver bandwidth. This is
referred to as "'classical" counting. To obtain deviations from "classical" counting
takes a considerable effort and requires very special circumstances not normally en-
countered. The model is idealized since other sources of interference, such as thermal
noise and dark currents, are neglected. With this model the M-ary Poisson detection
problem can be formulated as follows. Let a sequence of events obeying a discrete
Poisson process occur over a sequence of M disjoint intervals AT where M AT =T
and the count over each interval is independent of all others. Let the observed process
be controlled by one of M possible intensity vectors n q + Eo , =1, 2, ... M, where
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The non-negative ngj is thus the intensity of n_ during the ith interval. Under
a fixed energy cons %raint for each signal, it is' required that

M

Zn AT = N, for all q. (3)
qi

i=1

The intensity vector n. represents constant intensity background noise super-
imposed upon the desired intensity. Let the corresponding number of events

occurring in the it th jnterval be k;. The problem then is to determine which
of the possible intensity vectors n is controlling the received Poisson proc-
ess by observing the sequence of “independent counts k = {k vk, k,, .. .kM

Under a maximum likelihood detection criterion and a pr10r1 equilio’kely
intensities, it is well known [ref. 1] that the optimal test is to form the
likelihood functions:



A (k) = Z a .k, (4)
q— qi i

i=

M
1
where

aqi = log [(nq.1

+ no) AT] (5)

and selectn  + n_ as the true intensity if no other likelihood function ex-
ceeds A (k_)-(.l If a°likelihood draw occurs (more than one A (k) is maximum),
it is known that any randomized choice amongst the maxima™®is equivalent,

In the following a purely random selection in the case of likelihood draws is
used. Equation (4) can be interpreted as a crosscorrelation of k with the
O‘qi‘s’ an operation readily performed by a digital crosscorrelator [ref. 1] .




II. THE DIVERGENCE OF THE DETECTION TEST

The divergence between two intensities n. and n_ of the above test is
defined as —-q

(A ) (6)

where

A, = A (k) - A (k)
Ja J— qQ~-

and E / (A) is the conditional average of A with respect to k given the inten-
sity nj/~ Abends [ref. 2] has shown that for M = 2 (binary detection) and the
cond1t10n n, = 0, the divergence normalized by the variance of A is maximized
by a "pulse%” type of intensity, where the level of the process is wholly con-
centrated in a single-count interval, Kialath [ref, 3] has extended this result
by showing that, under a total energy constraint, other suitable forms of
""distance'' are maximized by similar '"pulsed' intensities, We extend these
notions here to the M-ary case and the equal energy constraint of Eq. (3).

The average divergence of an M-ary intensity set{Eq} will be defined as

D
(7)

Since Ek/j(ki) = (nji + no) AT, the average divergence becomes

=2 4 Z Z Z (nji - nqi){log[(nji+no)AT]

j q i
n, AT
-log|(n . +n JAT =£Z MZ n,.log [l +~Jl———]
qi o MZ ji K
i J
n AT
_Z Z n..log (l +—-SI1<L—) (8)
i £ a

where K = nOAT. The non-negativeness of the nji and n_ allows one to

write:



ol
I A

n..AT
2AT ji
_M—_E E nylog | 1 +—F
i j

) n, AT Z Z
max log(l +—ll—) n.., AT
i, j K [ ji

A

M | i,

= 2Nlog (1 + %) (9)

as an upper bound under the constrain of Eq. (3). However, the first equality
holds if the second term in Eq. (8) is zero, requiring n.., j # q to be zero

for all i at which nqi is non-zero; that is, the intensitiés must be mutually
disjoint. The second equality in Eq. (9) holds if n. = N for oneiandn,, = 0
for all other i, Thus, the upper bound for D occu‘.]rs if the intensities ©of the

set are disjoint and wholly concentrated in single counting interval. This is
satisfied with the set

yq :{N/AT Siq}, q=1,2,...M (10)

where 81 is the Kronecher delta. The above represents an M-ary ''‘pulsed"
intensity%et with each intensity occupying one of M intervals. It is signifi-
cant to note that any disjoint intensity set, no matter how many intervals
are used, yields the bound of the first inequality of Eq. (9), but only the
pulsed intensity set of Eq. (10) yields the second bound. Thus, of all dis-
joint intensity sets, only the pulsed set maximizes D, which immediately
implies only M intervals are required for maximization with M intensities.
Lastly, it may be noted that with an average energy constraint over all inten-

sities:
1
M Zz nAT = N (11)
j i

instead of Eq. (3), nji < MN/A T results and Eq. (9) becomes

D < 2N log [1 + —M%] (12)

which exceeds that previously derived. Furthermore, the upper bound in
Eqg. (12) occurs when M - 1 intensities are zero everywhere, and one inten-
sity is a pulsed intensity having a value MN/ AT,



III. DETECTION PROBABILITY

The optimality of the M-ary pulsed intensity set has been shown, based
on a divergence criterion. This section will show that in certain cases this
superiority also extends over a criterion based on maximization of the detec-
tion probability., First an expression for the detection probability for a
general intensity set {n } is required. Usually this is obtained by first
writing the conditionalfﬁ-obability density of A (k), and then integrating over
regions of correct decisioning. However, Aq (k) in Eq. (4) is a weighted sum
of independent Poisson variates which in general is not a Poisson variable.
Rather, the true density involves an M-fold convolution of modified Poisson
densities, yielding a result that is difficult to integrate. Instead an alterna-
tive expression for the detection probability is used. It was derived in the
appendix and has the form:

Py = el\/-INz max {\I/ (q,_j_)} (13)

R

where N is the intensity energy constraint of Eq. (3), RM is the space of all
M-dimensional vectors j having non-negative integer components, and

M (n.+n)ATji
¥(q,j) = 1 [ql o/27]

1 - exp [—MnOAT] ) (14)
1= i’

The derivation of Eq. (13) follows an analogous procedure used in Gaussian
channels (see Viterbi {ref. 5}), but is somewhat complicated by the fact that
likelihood draws occur with non-zero probability.

Determination of the intensity set{n } for which P is maximum is of
interest, This has been obtained for twoqparticular casés of interest:

Case I — M = 2 and symmetric intensity sets: -

Let M 2 and consider the set of all possible symmetric intensity sets;
i,e., if n; {a, b}, then np = {b, a} . For this case it is easy tq show that
for any intensity set of this type, the vectors j for 3vhich ) (1,_1) <¥ (2,__'1)
when a>b is simply the set j = {jl’ jZ} such that jIEjZ' UNc,ing the constraint
of Eq. (3) and lettingn; = {a, N-a} and n, = N-a,a}, > < a < N, the de-
tection probability is:



N+K © A 3 2
P_e'( ) z (a + K) (N - a + K)
D~ 2 ! int
. : 1 2
J1:0 JZ:O
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R Jy- J2-
3170 37y

where again K = n A T. Differentiating with respect to '"a'" yields

Jl'l
ap _(N+K) > jp-1 iz
D = e ' z Z A- ., B"
da 2 (3,-D)! jo!
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_ oAt B2
ST oD
o0
= B31 jp-1
+ Z z T Goo1)!
J1° J2
3170 ¥
j i -1
) 2 21 :
le (j1_1)|
j .
00 l . . .
iy iv
o (NFTK) ]y z z Alp?4pla?
—3 TR

=l dpmiy-t

where A = (a + K)and B = (N - a + K). Since A and B are positive, the
above substantiates Pp as a monotone increasing function of a. Therefore Pp
is maximized with ""a' having its maximum value, a = N, corresponding to
the pulsed intensity set of {10) with M = 2,



Case II -- Any M, N/K — 0

The limit above implies a high background noise level situation. We ob-
serve here that

-N
e E .
PD v ;na.x Y (q’_l)
RM

-N M n iAT
2 Z C max % exp Z jylmf 1+ —qK—— (16)

—~—0

-N M
—> e E .
N v C max < exp § J; nin T/K
K M ¢

where C e-M'K IT
i

(l/jli ) and the limit follows since nin T/Kf N/K——O,

Now, with the constraint of Eq. (3):

. <
z JininT/K __]maxN/K (17)
i
where
j = max {J} .
max i i -

Thus:
e_N ‘ N
PL<Sg ), Cex {imaxV/K} ® =0
M

The upper bound occurs when

n;ax{exp Z i ninT/K} = exp {jmaxN/K} (18)

i=1

which clearly is true for the pulsed intensity set of Eq. (10), signifying
asymptotic optimality for any M.



To determine optimal intensity sets (either global or local) in the general
case, using Eq. (13), still remains an elusive task, It has been conjectured
by many (e.g., see refs. [1] and [3]) that the pulsed intensity set is, in fact,
the true optimal set, but to the authors' knowledge a rigorous proof has not
been shown.
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IV. ERROR PROBABILITIES WITH PULSED INTENSITY SETS

In this section the performance of the pulsed intensity set in M-ary de-
tection is investigated by evaluating the error probability Pg = 1 - Pp. This
can be obtained by using Eq. (13), but the computation can be more con-
veniently handled by noting that for the pulsed intensity set of Eq, (10) {A
of Eq. (4) constltutes a set of independent, Poisson random variables, The
variable has level (N + K) if the q th intensity is sent, and has level K
otherwise (I% nAT). Recall, if the qt th intensity is sent, a correct decision
will be made with probability 1/r + 1 if A, equals r other A's and exceeds the
remaining M - 1 - r, Therefore, when a?l possibilities are considered, the
conditional detection probability is

-(N + MK) M-1 oo
- € (N + K) -(N + K)
Pp/q = — ™ — * D [—re ]

(M-1)!
[1'-' M-1- r).'(r+1)] . (19)

The right side is independent of q and thus represents the average detection
probability, By applying the identity:

(M - 1). M-l-rr A BWM
rZO TFD M-T-o o A B = T8 [(1+A) '1]’

one can rewrite the error probability as

)
(N+MK) (N+K)
_ _ e (N + K)
PE(N,K,M)—I-PD-I-—————M -Z[ o
x=1
x-the_K M-1 .
£ Va [(l + a) ] (20)
t=0 :
where
a = K
- x-1 t
. K
x! =
t=0 )

11



The parameter P (N, K, M) has been digitally computed by the authors for
various values ofEi\I, K, and M. An exemplary plot is shown in Figure 2 in
which Pr (N, 3, M) has been plotted for various M as a function of N. It is
of paramiount significance to note that P, depends on both signal energy N
and noise energy K in the counting interval, and not simply on their ratio.
This fact is emphasized in Figure 3 in which P (N, K, 2) is plotted as a
function of K for two fixed ratios N/K. This dépendence on both signal and
noise energies distinguishes the Poisson detection problem from the anal-
ogous coherent gaussian channel problem. WNote that the interfering noise
cncrgy K depends only upon the hackground energy in the interval AT, which
is the width of the transmitted intensity pulse. The prime advantage of op-
tical systems is precisely their ability to remove the effect of background
noise by making A T small, and has been emphasized in the literature

(ref. 6).* This fact can be illustrated graphically, using Eq. 20, by con-
sidering a binary Poisson channel (M=2) sending information at a rate /T
bits/sec. The effect of the parameter AT is indicated by plotting

PE(N, n TA T/T, 2) as a function of A T/T, for fixed intensity energy N and
batkground noise energy per bit interval n_T. This is shown in Figure 4.
The results indicate the continuous improv%ment obtained by decreasing the
"duty cycle'" AT/T, the ultimate limit corresponding to AT = 0. The
improvement, of course, is made at the expense of information bandwidth
and peak power (both inversely proportional to A T). Surprisingly, the
improvement is quite small at low values of N, and the increase in band-
width may not be worth the improvement obtained in error probability.

A quantity of particular interest to communication engineers is the
detected "signal-to-noise ratio'. This is often denoted [ ref. 7] as the
ratio of the square of average electron count with no noise to the variance
of the count when noise is present. For Pé)isson counting statistics with
pulsed intensities this becomes (S/N) = N”/(N+K). The behavior of P, of
Eq. (20) as a function of K for fixed (S/N) is illustrated in Figure 5 for a
binary system. The results again indicate the ambiguity in using S/N as a
design criterion. The asymptotes show the wide functional variation of PE
as K increases from zero.

As illustrated in Figure 2, the error probabilities increase as M in-
creases. However, the use of a single set of curves to compare various
M-ary systems is misleading. An M-ary system with A T second counting
intervals transmits log,M bits of information in MA T seconds. It therefore
communicates at a rate

1og2M

R = T~ bit/sec. (21)

*Also Karp, S., and Gagliardi, R.: A Low Duty Cycle Optical Communi-
cation System. Presented at Eastcon Convention, Washington, D. C.,
October 1967.
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If the transmission rate is normalized for each M, A T must be readjusted

to maintain a fixed rate R = R_. The effective noise level per counting
interval is then ©

n ZlogZM

n AT = nologZM/MRo ﬁo —r — = 2K, log,M/M  (22)

o

where K _is the noise energy in an interval 1/2R . Thus, for a comparison
of differ@nt M systems, each with fixed 1nformat?on rates, one should com-
pare the parameter P_ (N, ZK log M/M, M) for each N. If this adjustment
is made using Eq. (20%1 the cufves of Figure 6 are generated, with K = 1.

The curve corresponding to M = ® is also shown, and is determined by
taking the limit of P_, (N, 2K log M/M M) as M— ©, This can be obtained
by replacing K in Eq. (20) by K' = 2K log M/M and noting:

- 1
lim e (NTMKY__ 4
M —
M
im  UAE =Ll ggor k1
M — o a
. okt k] M1 0 forx = 1
hm Z tl e ‘
M — i=4 : _— lforx> 1
Using the above results in
) (N)x e—N
lim = Pp(N,2K log M/M,M) =1 - 5 “=op—
x=2
1o -Ne Vo e My aa+ne™ (23)

which is plotted as M = ® in Figure 6. It is noteworthy that Eq. (23) is
precisely the probability of an event count of zero or one occurring in a
noiseless counting interval of signal energy N. This has the following inter-
pretation. As M — © the number of intervals becomes infinite, but the
normalized noise energy per interval, K' = 2K log M/M approaches zero.
The probability that more than one event W111 ofcur in any one of M - 1
independent non-signalling intervals having noise energy K' is given by

M-1
I
1 - (1+K'e‘K) )

17
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This approaches zero as M — o, indicating that counts of zero or one will
“occur in every such interval with probability one. Furthermore, there will
be an infinite nuymber of intervals with a zero count and with a one count.
Therefore, as M— ©, an error will occur (with probability approaching one)
whenever the signalling interval has a count of zero or one, and an error

will never occur when the latter interval has a count greater than one; hence,
v Eq. (23).

It is also interesting to note in Figure 6 that best system operation, in

~terms of minimal error probability, does not always correspond to M— .
In fact, it can be shown that hest M operation depends strongly on the amount
of background noise K ., For example, if K “& 0, it is §¢sy to show [ using
Equation (20)] that for’M finite P_(N, K', M)°s(M - 1)e” /M, which is

. monotonically decreasing with M and always less than the M = ® value of
Eq.. {23). Thus, with negligible background noise, system operation im-
proves with decreasing M and is best for M = 2. Physically, this means
the noise reduction advantages due to decreasing AT as M increases does
not offset the increasing errors due to the larger nambers of likelihood
draws that will occur. (Recall a random choice is made in the event of
draws,) For large amounts of background noise, however, the converse is
true, and M- = ® does yield minimal error probability. -

It should be emphasized that a fixed energy constraint was imposed on
the signal intensity, and therefore the time average power P_ = N/T =
' NR/log M actually approaches zero as M —®©, If the average power level .
~ of the source had been fixed at some level P_, then N must be replaced by
- P _log M/R in the previous equations, and it %an be seen that P, ~0 as
— o for'any P_> 0., This result may be compared to a similar.resulf
for an additive ga?ussian channel (ref. 8) in which zero error probability
occurred only if Po satisfied a condition dependent on the rate R. )

The P, results above are useful for determining the channel capacity

~ (maximum information rate) of an M-ary pulsed intensity set.- Assume a
transmitter sends one of a group of M-pulsed intensities every T second,
with each pulse having width AT = T/M. If the transmitter operates at a
fixed rate R , then again T = log M/R_as given by Eq. (21). The chapnel
can now be represented as a sylnmetri?: channel in which,each ofthe M
equal likely intensities is converted to itself with probability 1 - PE-,fand is
converted to any of the other intensities with-equal probability '
PE/M-I. The channel capacity for this type of system is known to be

: P :
c o log M + Pplog gz~ + (1 - Pp) log (1 - Pg) e
¢= g M/R, R

where P_, = P (N,n log: M/ MR , M), Again the s}ig'na'—l' ‘intensity energy N,

E dE >0 : . : ‘

the background hoise power n _, %nd the rate R_ to be held fixed are con- -

~ sidered. Then, as M — co,E% approaches the%imit in Eq. (23), while the
channel capacity has the limit o ‘ e

‘c——[1-(1+N)e‘N]R°- - ,‘z‘ (25)
L . o 19



for N finite. The above indicates information transfer can be forced to
approach any desired rate with a finite signal energy by using an increasingly
larger number of intensities and adjusting R _ at the transmitter. However,
each level is transmitted with a non-zero error probability, and the infor-
mation bandwidth and peak power become infinite. Again introduction of a
transmitter power constraint, instead of an energy constraint, will yield
operation at a capacity RO with a zero error probability, as M— o,

20



%/

V. CONCLUSIONS

This report has investigated the M-ary Poisson detection problem,
defined as maximum likelihood detection of one of a set of M discrete
Poisson processes in the presence of an additive discrete Poisson noise
process. The problem model represents a discrete version of an optical
communication system in which the observables represent counts of
photoelectrons, the signals represents intensity modulated CW optical
sources, and the noise represents background radiation received within the
optical bandwidth. The photoelectron count can then be modeled as a time-
varying Poisson process, the average rate of which is proportional to the
sum of the intensities of the modulated source and the background radiation.
In practical operation the intensity of the optical source is a continuous
process, but the analyses may be put on a discrete basis by partitioning
the signalling intervals into subintervals over which the intensity is taken
to be constant, The above Poisson model is examined, and the advantages
of a pulsed type of intensity set is demonstrated. The latter corresponds
to an optical system using pulse position modulation in which information
is transmitted by a burst or pulse of optical energy located in one of a set
of pulse positions. The performance of such a system, in terms of pulse
width and numbers of pulse positions, is presented herein. The results of
this report basically represent theoretical limits to which an optical link
can approach, since the deleterious effects of receiver (thermal) noise
have been neglected. This latter assumption becomes valid, for example,
when photomultipliers are used in detection, and the background radiation
collected at the receiver is the predominant source of noise.

The analyses and performance results are in terms of N and K, the
average electron counts due to signal and noise, respectively. However,

these results may be easily converted to average power requirements using
the relations

N = 5 P_M/hfB

K = nP_/hiB

where P and P_ are the average signal and background noise power, h =
6.62 x 10734, n'r] is the photodetector efficiency (including photomultipli-
cation), f is the optical frequency of the CW source, and B = 1/AT. The
average power P and P_ can be further converted to transmitted power by
introducing spacé losses'and receiver optics (e.g., ref. 9, Ch. 1,2). Exact
synchronization has been assumed here between transmitter and receiver at
all times. In addition to receiver thermal noise, the analysis has excluded
the effects of photomultiplier statistics, saturation, and dark currents.
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APPENDIX

This appendix presents the derivation of Eq. (13). The average proba-
«  bility of correctly determining the true intensity in M-ary transmission is

. . M
.y Pp=yn » P(D/a) (A-1)
q=1

where P(D/q) is the probability of correct detection, given thatn_+n is
the true intensity. Now the conditional probability of the occurrehce of an

observed vector k = j = {_]1, Jos Jgse - .JM}, given Eq + n _, is

M [ AT o)A N

n j..' e (o] e

. i

i=1 (A-2)

A -
=\I'(q,al)eN

where N is the energy constraint given in Eq. (3). The conditional detection
probability P(D/q) is then obtained by summing over the set of all j such th
that a correct decision is made. A correct decision will occur, when the q
intensity is used, if A is selected as being the largest. If no other A,  ex-
ceeds Ag but r of the A" 's equals Aq, the receiver will be correct with'a
probability of 1/r + 1, assuming a purely random selection is made when
likelihood equalities occur. Now j is an M-dimensional vector with non-
negative integer components, and the space of all such vectors is denoted
as R™M. The conditional detection probability P(D/q) can therefore be
written by summing over all j ¢ R™ leading to a correct decision. Thus,

M
PID/9) = 3wy 2 wigi)e ™ (A-3)
r=0 qu

where J _ is the set of j ¢ RM such that no other A_ exceeds A and r other
A's eq&gl A . If we let I denote the r dimensional index set %orresponding
to these r At'sg, for simplic(ity, qu can be denoted symbolically as

_ (: M, - -
Tor {1 CRY: A =max Ay = Ayt qu} . (A-4)
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Substituting Eq. (A-3) into Eq. (A-1l) yields a general expression for the
detection probability:

-N

e M M
Po=% 2, 2

g=1l r=0

-1

S w1 Yl D (A-5)
J
qr

Now by examining carefully the set J _, the expression above can be simpli-
fied. Making use of the monotonicity?of the exponential function. one can
write:

J = {J_ CRM: exp ( Aq) = exp (max A

2 k) = exp At, tCIq}

oM M i, M j.
{_l CR™: iI;I1 [(nqi + no)AT] i= mi,x ilzl [(nki+ nO)AT] i
M
I
i=1

oo, + n)A T]ji, t Clq}

{i RM. w(q,j) = max ¥(k,j) = ¥ (t j), ¢t qu} . (A-6)
k

Thus J,. can be alternatively defined as the set of j for which ¥ (q, j) is one
of r + I'maximum ¥ (k, j) functions. This means every j in Jg, also belongs
to r other sets Jip,tClg, or correspondingly, a point j in Jty, t(l,,-exists
such that ¥ (t, j) = ¥ (q, j). Note that the set of subspaces {Jqr} are dis-
joint for different r but not for different q. With these facts consider the
summation.

M ¥ (q,j)
53
T,

for fixed r. For any term of the sum, say ¥ (q , j )/r+l, there exists r
other terms having the same value, one for each pgintj_ of J " t CI_. The
total contribution to the sum above from this set of r + 1°terms is theh

¥(q ,j )
(r + 1)[—%{’—] = ‘I’(qo,jo) = mzx\lf(q,jo), (A-8)

the last equation following since j—o € J Thus, overlapping points in the

q.r’
summation of Eq. (A-7) contribute a totd) amount given by Eq. (A-3). It

therefore follows that
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§ Z Yi(q,j) _
= 5 r+1 max ¥ (q, j)
qr

(A-9)
q=1 Ul .
q q q
. Where U J  is the union over of the subsets {J . Inverting the order of
summatiofin Eq. (A-5) and using Eq. (A-9) all8%s one to rewrite:
v e—N M-1
Py = =31 Z max ¥ (q, j)
r=0 UJ . d
q
-N
= & Y., max ¥ (g, ]) (A-10)
rRM 4

where we have employed the fact that {‘Ilj qu} are disjoint subspaces, and

the sum over all r spans the whole space RM, Equation (A-10) is Eq. (13)
of the report,
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